
1 © 2024 SOAFEE© 2024 SOAFEE

Jerry Zhao, Chief Engineer at Panasonic
Automotive Systems Co., Ltd

2024/5/9

Transforming Automotive
Edge to a Software-
Defined Platform

The Role of VirtIO Based Device
Virtualization

2 © 2024 SOAFEE2 © 2023 SOAFEE© 2024 SOAFEE

Why: Industry Trends with Software-Defined
Vehicles

Why: Industry Trends with Software-Defined
Vehicles

What: Architectural Changes in the Automotive
World

What: Architectural Changes in the Automotive
World

How: Decoupling Software from Hardware with
Device Virtualization

How: Decoupling Software from Hardware with
Device Virtualization

To where: Conclusion & Overlook - Constructing
a bright and open future of SDV with SOAFEE

To where: Conclusion & Overlook - Constructing
a bright and open future of SDV with SOAFEE

3 © 2024 SOAFEE3 © 2023 SOAFEE© 2024 SOAFEE

Industry Trends
with Software-
Defined Vehicles
(SDV)

4 © 2024 SOAFEE

Industry Trend with SDV

Software-Defined Vehicles Speedily

Delivered

Values
Connected

& AI-powered

Open Source,

De Facto Standard
Drastic Changes

in EE Architecture

5 © 2024 SOAFEE

Shift to SDV Industry Trend

*1: Source: Ministry of Economy, NXP Semiconductors, Quora, Ignition in Action, NYC AVITAION, Trade
and Industry "Toward acceleration of productivity improvement by IT" Mitsubishi UFJ
Morgan Stanley Securities' materials, etc.

Increased Complexity
of Vehicle Software (*1)

Year 2000 2007 2030

1 million
lines

5 million to
10 million lines

6 billion lines

100 million
lines

2016

Software Volume in Vehicle

x 6000

Increased Cost Contribution
of Vehicle Software (*2)

*2: Source: Lux Research

20%

30%

35%

50%

0%

10%

20%

30%

40%

50%

60%

2000 2010 2020 2030

Percentage of Electronics & Software in Vehicle

x 2.5

6 © 2024 SOAFEE

Automotive Industry Game Changer

Possessing larger

software team

Sophisticated

architecture

Complement
with ecosystems

Rapid product

discovery

Shift in Key Strategies

Maximizing LOC

per man-month

7 © 2024 SOAFEE

From Hardware First To Software First

Traditional
Manufacture HW prototype

and develop SW

Long wait time for limited HW

High sample cost

Limited to low-level SW & HW

HW Emulation
Emulate HW and develop SW

simultaneously

Costly & time-consuming

Cloud-Native
Develop SW on Cloud

and select optimal HW

Rapid function update

Scalable for large-scale

development

1 2 1 2

8 © 2024 SOAFEE8 © 2023 SOAFEE© 2024 SOAFEE

Architectural
Changes in the
Automotive
World

9 © 2024 SOAFEE

Makes Apps code

simple by hiding

the detail of the

underlying platform

Decouples software

from underlying

hardware

Advancement of technology and updates are difficult.

Overlap of computing resources is an issue also.

Automated

parking

Vehicle

control
Body ADAS CECU

Control Navi

Navi

Map

Sensing

peripheral

environmen

tsPosition

recognition

Indoor

recognition

HD

MAP

"Those who can advance their software more rapidly

will gain crucial competitive advantage."

ECU consolidation is not a purpose but means --- The true purpose is to establish the optimal architecture for
evolution of software.

Processor system

General purpose
peripheral

In-vehicle network

Application Framework

Hardware Virtualization Framework

Data

AGL Android RTOS
Autosar

(AP)

Applications

3rd Party

Desirable Direction of Automotive System Architecture

Logical

architecture

10 © 2024 SOAFEE

Historical Trend of General Computing Architecture
(Distribution and Centralization)

Created by Panasonic Automotive Systems referring to ITmedia IT solution

cram school [Graphic explanation] History of virtualization on a single sheet

https://blogs.itmedia.co.jp/itsolutionjuku/2015/06/post_90.html

HW

AP

OS

HW

AP

OS

HW

AP

OS

HW

AP

OS

AP AP

HW

AP AP AP

HV

OS OS OS

HW

AP

OS

HW

AP

OS

HW

AP

OS

HW

AP AP AP

HV

OS OS OS
Orchestrator

HV HV

HW HW HW

AP
AP

Distribution

Centralization Centralization

Distribution

Centralization
Orchestration

1964 1967 1980s 1999 2000s

IBM S/360 IBM S/360 CP-40/67 VMware

AP
AP

AP
AP

OS

OS

The history of general computing architecture is repeating the cycle between centralization and distribution,
and the automotive industry is following a similar path.

OS OSOS

https://blogs.itmedia.co.jp/itsolutionjuku/2015/06/post_90.html

11 © 2024 SOAFEE

Centralization Distribution

Swing

Greater Complexity in Automotive for Optimal
Architecture
Complicated natures of both devices and applications make a greater complexity
for automotive

• Diversity of Devices due to Various Car Models
• Allocation policies of applications and devices added difficulty in determining optimal

system architecture whether distributed or centralized

12 © 2024 SOAFEE

HW

AP

OS

HW

AP

OS

HW

AP

OS

HW

AP

OS

AP AP

HW

AP AP AP

HV

OS OS OS

HW

AP

OS

HW

AP

OS

HW

AP

OS

HW

AP AP AP

HV

OS OS OS

HV HV HV

HW HW HW

Distribution

Centralization Centralization

Distribution

Centralization
Orchestration

1964 1967 1980s 1999 2000s

Orchestrator

HW-agnostic Virtualization Framework: Decouple Operating Systems from Hardware

AP
AP

AP
AP

AP
APApplications

Hardware

OS-Agnostic Application Framework: Decouple Application from Operating Systems

No matter how the underlaying computing architecture has changed, a consistent objective is to decouple apps (directly
contributed to user values) from underlying computing architecture

→ An Operating-System-Agnostic Application Framework and a Hardware-Agnostic Abstraction Framework are
continuously to be the key to drive industry shift from hardware-centric to software-defined

OSOS OSOS OSOSOperating Systems

Historical Trend of General Computing Architecture
(Distribution and Centralization)

13 © 2024 SOAFEE13 © 2023 SOAFEE© 2024 SOAFEE

Decoupling
Software from
Hardware with
Device
Virtualization

14 © 2024 SOAFEE

Device Virtualization: Key to Software Defined Vehicles

cameraTCUDevices display
1

storage
1

display
2

storage
2

NPU

...

Cohesion

Info.

Load characteristics

Virtual Devices

Applications

Application View of Virtualized DevicesApplications

Software Defined Vehicle needs a common device virtualization framework to decouple software
implementation from diverse hardware targets across vehicle variants/generations, architectures

(single/multiple-ECU) and development environments (real/virtual ECU)

Virtual display Virtual storage

Common Device Virtualization
Framework applied for diverse HW
environments

15 © 2024 SOAFEE

Decouple Hardware and Software

Hypervisor needs Standard InterfacesConsolidation requires Hypervisor

Apps

OS

SoC

ECU1

Apps

OS

SoC

ECU2

Apps

OS

SoC

ECU3

Individual ECUs Integrated HPC

Hypervisor (HV)

SoC

Apps

OS

VM2

Apps

OS

VM3

Apps

OS

VM1

Apps

OS

Specific HV

Specific SoC

Apps

OS

Proprietary

Interfaces

HV Specific

Standard

Interfaces

Apps

OS

Any HV

Any SoC

OS

Apps

VirtIO

HV Agnostic

Standard Specification Standard Implementation

2022: OASIS 1.2~2018: OASIS 1.1

Block

Device

GPU

Input

Device

Net

・・・

2023~: OASIS 1.3+

・・・

SCMI
(e.g. Sensors)

I2C,

GPIO

RPMB

・・・

Block

Device

GPU

Input

Device

Net

GPU

・・・

SCMI
(e.g. Sensors)

I2C,

GPIO

RPMB

・・・

Block

Device

GPU

Input

Device

Net

GPU

CAN

Video

NPU

・・・

Camera

16 © 2024 SOAFEE

Overview of Device Virtualization - Concept

cloud

Linux/Android

VirtIO

Linux/
Android

VirtIO

Hypervisor

SoC

Host VM

Hypervisor
Environment

Linux/Android

VirtIO

SoC

Non-Hypervisor
Environment

Other OS
(RTOS etc.)

VirtIO

Cloud
Environment

Linux/Android

VirtIO

SoC SoC

Multi-ECU
Environment

Linux/Android

Device Virtualization with VirtIO benefits in establishing a complete and healthy ecosystem
to enhance interchangeability and interoperability in various scenarios.

Emulated Device

17 © 2024 SOAFEE

Pains around Peripheral Virtualization in the Past

Proprietary Para
Virtual Devices ZC,ZD

Must Adapt to Every Single Incompatible Interface!

OS Middleware

Apps

SoC A SoC B SoC C SoC D

Hypervisor X Hypervisor Y Hypervisor Z

Proprietary Para
Virtual Devices XA

Proprietary Para
Virtual Devices ZC,ZD

Proprietary BE Device
Drivers XA, YA

Proprietary BE Device
Drivers YB

Proprietary BE Device
Drivers YC, ZC

Proprietary BE Device
Drivers ZD

Limited Freedom to Choose Hypervisor and SoC Combination!

Linux

Exten
sion

Dependency

on specific virtualization
solutionFragmentation

Serious Barrier
For “Virtualization
Ready BSP”

Proprietary Para Virtual
Devices YA, YB…

Proprietary Para Virtual
Devices YA, YB…

Proprietary Para
Virtual Devices YA,YB…

*Excerpt from Panasonic’s Keynote Presentation at the AGL AMM July 2020

18 © 2024 SOAFEE

Enter Standard Virtualization Framework - VirtIO

• Developed in 2008 as a hypervisor neutral way of

accessing devices

• Provide virtual machines access to Input/Output

• A standardized interface for I/O between virtual

machines and hypervisors

• Abstract device functionality instead of hardware

• Drivers are widely available in all major operating

systems (Linux, Android, BSD, Windows, etc)

• Supported by all clouds and enterprise hypervisors

Guest VM

Hypervisor

SoC

VIRTIO

Reliable and proven technology

Versatile abstraction model

Scalable and high performance

Multiple interoperable
implementations

Broad ecosystem across multiple
industries

*Excerpt from OpenSynergy Presentation at AGL F2F Oct 2022

19 © 2024 SOAFEE

VirtIO as a Common Framework for Virtualization

Common Interface

OS Middleware

Apps

SoC A SoC B SoC C SoC D

Hypervisor X Hypervisor Y Hypervisor Z

Proprietary Backend
Device Drivers XA, YA

Proprietary Backend
Device Drivers YB

Proprietary Backend
Device Drivers YC, ZC

Proprietary Backend
Device Drivers ZD

Enhanced Freedom to Choose Hypervisor and SoC Combination

Linux

Exten
sionLimited Fragmentation=

Common Interface defined by
VirtIO largely improves community
and encourages
 “Virtualization Ready BSP”

VirtIO Framework &
 Standard Para Virtual Devices (Front End)

✓ Healthy
 Competition
✓ Efficiency

*Excerpt from Panasonic’s Keynote Presentation at the AGL AMM July 2020

20 © 2024 SOAFEE

VirtIO Beyond Edge Hypervisor

SoC A SoC B SoC C Cloud Server

Proprietary Device
Drivers A

Proprietary Device
Drivers B

Proprietary Device
Drivers C

Emulated Device

OS Middleware

Apps

Linux

Extensi
on

VirtIO Interface

Maximized commonality of
OS Software among SoCs,
virt/non-virt, cloud/edge
environment

Use VirtIO as Common I/F with
Cloud-based AGL to enhance

interchangeability between cloud
and edge

Utilize VirtIO as a well-defined device HAL
even for non-virt OS may further helps to

reduce fragmentation across SoCs

Develop & Test in Cloud
Deploy in Native (Real HW)

21 © 2024 SOAFEE21 © 2024 SOAFEE

VirtIO for Edge
VirtIO for Hypervisor & Non-Hypervisor Environment

VirtIO frontend support for most of CDC use
cases have been achieved in AGL & Android

Common device HAL “virtio-loopback” portable to
execute on both native and virtual environment

App

Common VirtIO Lib

Linux SubSystem

user

kernel

VirtIO Frontend Driver

SoC

Vendor User Lib

Linux Subsystem

Vendor
Device
Driver

VirtIO Device
 (e.g vhost-user virtio
device)

Frontend VM

Loopback-virtio transport

Vendor
Device
Driver

Vendor
Device
Driver

Vendor User LibVendor User Lib

High Level Architecture Design

AGL

VirtIO

SoC

Non-Hypervisor Environment

AGL/A
ndroid

VirtIO

Hypervisor

SoC

Host VM

Other OS
(RTOS
etc.)

VirtIO

Hypervisor Environment

Status and Future Plan

2022

• virtio-blk

• virtio-rng

• virtio-input

2023

• virtio-gpu

• virtio-snd

• virtio-can

• virtio-gpio,
i2c

2024~

• Support on
multi-ECU
architecture

• Support on
cloud-
native

22 © 2024 SOAFEE22 © 2024 SOAFEE

VirtIO for Cloud
Completely Identical IVI binary running on both cloud and edge

Edge

Cloud

AWS Graviton

AGL
IC VM

VirtIO

KVM

Android
IVI VM

VirtIO

AGL
IC VM

VirtIO

COQOS Hypervisor

Android
IVI VM

VirtIO

AGL Reference Hardware

AWS Graviton G5g
Cloud Instance

Panasonic SkipGen-Flex

Identical
VM Binary

23 © 2024 SOAFEE23 © 2024 SOAFEE

VirtIO for Cloud
Demo) Completely Identical IVI binary running on both cloud and edge

24 © 2024 SOAFEE

VirtIO Beyond Single SoC
Integrated Cockpit Virtual Display System “Unified HMI”

A Unified Virtual Display based on VirtIO-GPU (“Unified HMI” technology) can be established to have Integrated
control of multiple display on distributed SoC systems

AGL

VirtIO

SoC SoC

Multi-ECU Environment

AGL

• Mappig multiple

physical displays

of cockpit & cabin

into a single large

virtual display

• Rendering each

application to its

arbitrary region

25 © 2024 SOAFEE

Integrated Cockpit Virtual Display System “Unified HMI”
VirtIO for Multi-ECU

Strict Restriction on ECU & Function-Display

Relationship causing harmful Impediment for Cockpit UX

Legacy HMI System

Full Flexibility on ECU & Function-Display

Relationship for Cockpit UX Innovation

Unified HMI System

26 © 2024 SOAFEE

Unified HMI Architecture
Consists of two main components.

1. Remote Virtio GPU Device(RVGPU)：Render apps remotely in different SoCs/VMs.

2. Distributed Display Framework：Flexible layout control of apps across multiple displays.

Linux

SoC/VM

Mesa

App

rvgpu-proxy

rvgpu-renderer

SoC/VM

virtio-gpu

virtio_lo_driver

Linux

OpenGL
lib

rvgpu-renderer

SoC/VM

Linux

OpenGL
lib

display2display1

Distributed
Display

Framework

Drawing command & Texture data

OpenGL ES
Command
Generation

UI Graphic
Processing

Distributed
Display

Framework

Distributed
Display

Framework

UINPUT

Software module
provided by RVGPU

Software module
required by RVGPU

Distributed Display
Framework

Input events

27 © 2024 SOAFEE

Unified HMI Architecture
Remote Virtio GPU Device (RVGPU)

• Network extension of virtio-gpu commonly used in GPU virtualization for VM.

• rvgpu-proxy : Transfer GPU commands generated by OpenGL ES to other SoCs/VMs.

• rvgpu-renderer : Receive GPU commands and draw graphics.

Linux

SoC/VM

Mesa

App

rvgpu-proxy

rvgpu-renderer

SoC/VM

virtio-gpu

virtio_lo_driver

Linux

OpenGL
lib

rvgpu-renderer

SoC/VM

Linux

OpenGL
lib

display2display1

Distributed
Display

Framework

Drawing command & Texture data

OpenGL ES
Command
Generation

UI Graphic
Processing

Distributed
Display

Framework

Distributed
Display

Framework

UINPUT

Software module
provided by RVGPU

Software module
required by RVGPU

Distributed Display
Framework

Input events

Input events Input events

28 © 2024 SOAFEE

Unified HMI Architecture
Distributed Display Framework

• Mapping multiple cockpit physical displays into a single large virtual screen.

• Control layout such as location, size, and display order of multiple apps.

HUPassenger IC

IVI

HUD

mirror

mirrormirror

Virtual display

Local
coordinate system

Multiple cockpit physical displays

On the virtual screen coordinates,
app window layout is controlled

29 © 2024 SOAFEE

Unified HMI
Demo

30 © 2024 SOAFEE

Unified HMI Now and Beyond

③Collaborates with ARM to realize a

“Display Zonal Architecture” with

Unified HMI & AGL to achieve a

scalable zonal architecture.

①Fundamental Unified HMI features

have been available Open-Source

in Github and AGL UCB and more

features will be supported this year.

②Collaborates with AWS to enable a

cloud native Unified HMI environment

with AGL able to develop UX/SW first

and HW second.

https://github.com/unified-hmi

© 2024 SOAFEE

Conclusion &
Outlook

Constructing a bright and open future of
SDV with SOAFEE

32 © 2024 SOAFEE

New AGL

Linux
VirtIOVirtIO

VirtIO BE

Backend
OS

Peripherals

Multiple SoC

Hypervisor

AGL

VirtIOVirtIO

Android

VirtIOVirtIO

①Easy to Switch ②Easy to Upgrade ③Easy to Migrate

VirtIO BE

Backend
OS

Peripherals

Multiple SoC

Hypervisor

Old AGL

VirtIOVirtIO

VirtIO BE

Backend
OS

Peripherals

Multiple SoC

Hypervisor

AGL

Linux
VirtIOVirtIO

Local/Cloud
Server

AGL

Linux
VirtIOVirtIO

Emulated/Simulated
Device

VirtIO enables to easily replace other
OS frontend to AGL, while keeping
OEMs/Tier1s’ existing backend and
base SW&HW platform.

VirtIO enables OS to easily upgrade
without dependency on SoC Vendor

VirtIO enables OS to be developed on
cloud and seamlessly deployed to

edge ECU, which enables full OS-level
binary parity

Advantages of Adopting VirtIO in CDC

33 © 2024 SOAFEE

New ADAS
OS

Linux
VirtIOVirtIO

VirtIO BE

Backend
OS

Peripherals

Multiple SoC

Hypervisor

ADAS OS A

VirtIOVirtIO

ADAS OS B

VirtIOVirtIO

①Easy to Switch ②Easy to Upgrade ③Easy to Migrate

VirtIO BE

Backend
OS

Peripherals

Multiple SoC

Hypervisor

Old ADAS OS

VirtIOVirtIO

VirtIO BE

Backend
OS

Peripherals

Multiple SoC

Hypervisor

ADAS OS

Linux
VirtIOVirtIO

Local/Cloud
Server

ADAS OS

Linux
VirtIOVirtIO

Emulated/Simulated
Device

Enable switch across different
ADAS/AD Operating systems and
different SoCs

Enable easy upgrade without
dependency on SoC Vendor

Enable cloud-native to reduce
development cycle

Advantages of Adopting VirtIO in ADAS
Increasing needs for functionality feature development & updates for ADAS and growing numbers of
solutions from SoC/OS/App vendors for ADAS/AD domain.
→ Need to ensure environment parity between cloud and edge and across different edge SoCs

34 © 2024 SOAFEE

①Existing architecture dependent on
specific SoC/HV

Challenges of Adopting VirtIO in ADAS

Hypervisor

SoC

Host OS/VM

ADAS
Func.

Physical Device
Driver

Guest VM

・・・

VirtIO

Hypervisor

SoC

Host OS/VM

Physical Device
Driver

Guest VM

・・・

VirtIO

ADAS
Func.

②Performance Function Safety

Hypervisor

SoC

Host OS/VM

Physical Device
Driver

Guest VM

・・・

VirtIO

ADAS
Func.

ASIL BASIL B

③No Available VirtIO
Implementation for RTOS

Linux

VirtIO

Cockpit
Func.

RT Linux

VirtIO

ADAS
Func.

VirtIO Impl. Available and
Standardized in Linux
Kernel Upstream

Need to be integrated
with RT Linux kernel

RTOS

VirtIO

ADAS
Func.

No Impl. for RTOS and
dependent on RTOS vendor• How FuSa (ASIL-B) can be

achieved with VirtIO
• How to reduce performance

overhead for ADAS use cases

Necessary for more discussions and collaboration in Open Community just like SOAFEE!

35 © 2024 SOAFEE

Ideal Device Virtualization Framework for Software-
Defined Vehicles (SDVs)

HW

AP

OS

HW

AP

OS

HW

AP

OS

HW

AP AP AP

HV

OS OS OS

HV HV HV

HW HW HW

Distribution

Centralization
Orchestration

Orchestrator

OS OS OS

HW-Agnostic Device Virtualization Framework

AP
AP

AP
AP

AP
APApplications

Operating Systems

Hardware

OS-Agnostic Device Service Manager & Framework

Scalable Open Architecture for Embedded Edge

Scalable, Open, Automotive, Flexible, Efficient, Endurable

© 2024 SOAFEE

Thank You

Danke

Gracias

Grazie

谢谢
ありがとう

Asante

Merci

감사합니다
धन्यवाद

Kiitos

شكرًا
ধন্যবাদ
תודה

	Slide 1: Transforming Automotive Edge to a Software-Defined Platform
	Slide 2
	Slide 3: Industry Trends with Software-Defined Vehicles (SDV)
	Slide 4: Industry Trend with SDV
	Slide 5: Shift to SDV Industry Trend
	Slide 6: Automotive Industry Game Changer
	Slide 7: From Hardware First To Software First
	Slide 8: Architectural Changes in the Automotive World
	Slide 9: Desirable Direction of Automotive System Architecture
	Slide 10: Historical Trend of General Computing Architecture (Distribution and Centralization)
	Slide 11: Greater Complexity in Automotive for Optimal Architecture
	Slide 12: Historical Trend of General Computing Architecture (Distribution and Centralization)
	Slide 13: Decoupling Software from Hardware with Device Virtualization
	Slide 14: Device Virtualization: Key to Software Defined Vehicles
	Slide 15: Decouple Hardware and Software
	Slide 16: Overview of Device Virtualization - Concept
	Slide 17: Pains around Peripheral Virtualization in the Past
	Slide 18: Enter Standard Virtualization Framework - VirtIO
	Slide 19: VirtIO as a Common Framework for Virtualization
	Slide 20: VirtIO Beyond Edge Hypervisor
	Slide 21: VirtIO for Edge
	Slide 22: VirtIO for Cloud
	Slide 23: VirtIO for Cloud
	Slide 24: VirtIO Beyond Single SoC
	Slide 25: Integrated Cockpit Virtual Display System “Unified HMI”
	Slide 26: Unified HMI Architecture
	Slide 27: Unified HMI Architecture
	Slide 28: Unified HMI Architecture
	Slide 29: Unified HMI
	Slide 30: Unified HMI Now and Beyond
	Slide 31: Conclusion & Outlook
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Ideal Device Virtualization Framework for Software-Defined Vehicles (SDVs)
	Slide 36

