

System Design and Verification for Mixed Critical Systems in SDV

SOAFEE APAC Seminar

Akihito Iwai Software Production Innovation Div. DENSO CORPORATION

21st September, 2023

© 2023 SOAFEE

Agenda

- 1. What is SDV (Software Defined Vehicle)?
- 2. Cloud Native Development
- 3. Challenges
- 4. Need for Standardization
- 5. Mixed Criticality
- 6. Enabling Tech Candidate: Lingua Franca
- 7. Cloud Native Development with Lingua Franca
- 8. Demo
- 9. Conclusion

SDV (Software Defined Vehicle)

- The concept and mechanism of **abstracting vehicle hardware** (electronic PF -> Virtual ePF))
 - ECUs, in-vehicle networks, sensors, and actuators with virtualization technology
- Software controlling these computer resources
- In other words, "How to separate apps, software, and hardware"

Objectives:

- Reduce development costs
- Provide new value to customers

New Requirements:

- Cross-domain applications
- Mixed Criticality*
- Cost-effective scalability
- On demand software upgrade

*Mixed Criticality: Integrating components with different levels of safety criticality

Vehicle Virtualization is a key technical challenge!

Cloud Native Development

Utilize virtual environments to reduce system development time

Challenges

- Handling of application runtime behavior (due to execution times, network latency, etc.) in cloud native SDV environment
- Mixed critical workload orchestration with time-critical event handling
- Satisfy non-functional requirements (Repeatability, testability, reliability, etc.)
 - Processor effects:
 - Pipeline hazards
 - Caches
 - Interrupts...

- Operating system effects:
 - Scheduling
 - Sporadic tasks
 - Dependencies
 - Mutexes

Hard to model SDV system behavior deterministically !

- Network effects:
 - Contention
 - Routing
 - Buffer overflows...

Need for Standardization

- Wide-ranged SDV domain cannot be solved by one company alone
- Consortiums to develop common standards and technology
- Accelerate SDV development through active participation in such consortia

Areas where DENSO could contribute

Mixed criticality and Distributed real-time

Orchestration for real-time and other aspects
Determinacy in a Distributed Environment

System Modeling

 Formal definition of architecture and requirements

Standardization vehicle I/F and API

• Standardization of vehicle signals independent of OEMs and ECUs

Microservice

loosely coupled system configuration
 Service discovery, dynamic orchestration

Abstraction of communication protocols

• Communication protocol abstraction (aggregation or unification)

Development framework, middleware

De-coupling SW and HW

• Environment-Independent SW with HW Abstraction

• Virtual machines, containers and middleware

DevOps

Continuous testing, continuous delivery
Efficient use of cloud resources

Reliable & secure connectivity

• High-speed, low-latency, and reliable communications

Digital twin

- State management and telemetry data collection
- Simulation using data
- OTA, providing operations for devices

DENSO proposal to MCO* team based on our core capabilities *Mixed Criticality Orchestrator

Mixed Criticality (MC)

Inter-dependence among certified and non-certified SW and HW components (Functional Safety)

- Mixed Criticality is an important problem to solve for SDV
 - Unify approaches for development and runtime execution of safety and quality managed (QM) processes
 - Transition to evolving ECU architectures (Isolated Domain controllers \rightarrow ECU consolidation)

Criticality aware design and development could be provisioned containerized and microservices in-vehicle

Mixed Criticality (MC)

- SOAFEE's Mixed Criticality orchestrator concept
 - Hardware abstractions for criticality agnostic application interface
 - Advanced virtualization methods involving resource management

• DENSO's Mixed Criticality solution:

- Provides an application-level safety envelope for handling uncertainties
- **Deterministic scheduling** methods for handling real-time requirements at the application interface
- Safety violations detected at runtime (and compile time)

The combination of the two concept is key to the realization of MC applications

Enabling Tech Candidate: Lingua Franca

Lingua Franca (LF) is a polyglot coordination language for reactive, concurrent, and time-sensitive applications.

• Open Source Project developed by UC Berkeley

- <u>https://www.lf-lang.org/</u>
- <u>https://github.com/lf-lang/lingua-franca</u>
- Main Features:
 - Handles application data flow complexity
 - Distributed Cyber-Physical System
 - Dynamic software components
 - Guarantees precision time coordination
 - Time encoded specification
 - Distributed event scheduler for various communication patterns

Integrating complex subsystems with adequate reliability, repeatability, and testability

Brief Overview of LF

- Reactor represents a concrete functional block that is time encoded
- Compositionality used to build data flow in the system

Lingua Franca semantics allow us to model and develop deterministic application code

Cloud Native Development with Lingua Franca

Mixed Critical run-time: Detect runtime violations of specified properties and invoke fault handler dynamically

DEMO

Conclusion

- → Our SDV activity focuses on System modeling for Mixed critical applications
- \rightarrow We are working with SOAFEE Mixed Critical Orchestrator working group
- → Proposing Lingua Franca as an essential solution for realizing "mixed critical orchestrator"
- \rightarrow We are looking for application scenarios for blueprint submission

Thank You Danke Gracias Grazie 谢谢 ありがとう Asante Merci 감사합니다 धन्यवाद **Kiitos** شکرًا ধন্যবাদ תודה