

Cloud Native in Vehicle OS and AD + Cockpit Fusion Architecture

Dongchao Xu Sep 21st, 2023

OEM's Roadmaps to Central Computing

- Global OEMs are transitioning from Distributed to Domain Controller architecture
- North America & Europe OEM/Tier-1's SOP in ~2027, and Japan in ~2030
- China OEM/Tier-1's earliest SOP in 2025

AD + Cockpit is the major form expected from customers in China

Adaptation to central computing architecture and domain consolidation is the key to **sustainable development of future generation vehicles**

Why Central Computing – Voice of Customers

 Lower the cost of Software Integration and Long-term sustaining is the most important reason why OEMs want to realize Central Computing

ThunderSoft Central Computing Reference Design

- Cockpit and ADAS 2 in 1
- Immersive User Experience powered by KANZI
- Al enabled Cockpit (Personalization by AIGC, Voice Assistant, Intelligent Car Manual, and more)

- Vehicle OS for Central Computing
- Hypervisor and Container
- 3D AVM, DMS and CMS
- ADSP algorithm integration
- CarPlay, Android Auto and HiCar

ThunderSoft Vehicle OS for Central Computer

Central Computing Oriented Architecture

AI powered HMI (LLM+AIGC)

Ecosystem Neutrality

Real-time & Deterministic

Safe and Secure

Cloud Native & Scalable Computing

ThunderSoft Vehicle OS for Central Computer

SDV Middleware – The Key to Scalable Computing

- SOA to decouple software applications and the underlaying services
- Provide deterministic in global task scheduling & data communication among heterogeneous systems in vehicle

Android		Linux/QNX			
$(\mu S) (\mu S) (\mu S) (\mu S) (\mu S) (\mu S)$		$(\mu S) (\mu S) (\mu S) (\mu S) (\mu S)$		$ \begin{array}{c} \text{AUTOSAR CP} \\ \text{SWC} \\ (\mu S) (\mu S) (\mu S) \end{array} $	
SDV Framework Android Proxy		SDV Framework AUTOSAR AP Proxy		Customized Based on SOME/IP	
SDV-RPC	SDV Tunnel	SDV-RPC	SDV Tunnel	SDV-RPC	
SDV-SD		SDV-SD		SDV-SD	
CC Deterministic RT Scheduler Scheduler Monitor		M Comm Wrapper Comm Protocol Comm Discovery		BSW	CDD
HAL Container Container				MCAL	

Cloud Native SDV POC Project with EWAOL (1/4)

- POC to validate the concept of cloud native development methodology in a mixed environment
- FaceID & QR Code recognition to trigger user defined actions
- Actions can be defined with app installed in a cell phone

Cloud Native SDV POC Project with EWAOL (2/4)

- Develop & deploy the software at Cloud side
- Perform cross-system joint test by leveraging ThunderSoft SDV Middleware

Cloud Native SDV POC Project with EWAOL (3/4)

- After Development & Testing from Cloud side
- Software got deployed into target system running in parallel with existing cockpit system software

Cloud Native SDV POC Project with EWAOL (4/4)

Thank You Danke Gracias Grazie 谢谢 ありがとう Asante Merci 감사합니다 धन्यवाद **Kiitos** شکرًا ধন্যবাদ תודה